Course Type	Course Code	Name of Course	L	T	P	Credit
DE	NMED532	Green energy	3	0	0	3

Course Objectives

- To make the students accustomed to estimating different green energy sources.
- To deliver mathematical steps towards the design of green energy machines.
- To deliver the concept of implementation of a hybrid power plant incorporating multiple green energy devices.

Learning Outcomes

Upon successful completion of this course, students will:

- · have knowledge about green energy principles.
- · learn the design of green energy machines.
- learn the design of green energy power plant and its economics.
- · beenable to perform innovative research in green energy.

II!4 NI	Total and the Commentation	, T 4	, , , , , , , , , , , , , , , , , , ,
Unit No.	Topics to be Covered Lecture	Lecture Hours	Learning Outcomes
1	Green Energy for Sustainability and Energy Security: composition and impacts, diversification and localization of energy system, position of green energy within renewable energy domain, energy and exergy analysis of green energy system	2	To introduce various green energy systems
2	Wind turbine: classification, structural design, working principle, power generation equation, Linear momentum theory: Belz limit, airfoil concept, performance of turbine: power coefficient, torque coefficient, tip speed ratio, Analysis of wind speed data, wind speed distribution functions, Variable speed wind turbines	7	The understanding of wind turbines harnessing energy from compressible flow. Students will be able to solve problems in the design of wind turbines.
3	Hydrokinetic turbine: classification, working principle, power generation equation, design and performance, establishing a low/ ultra head power plant	4	The understanding of low/ultra head hydro turbines harnessing energy from <i>fluid</i> flow.
4	Tidal Turbine: classification, wave principles, working principle of turbine, power generation equation, design and performance, establishing a tidal power plant	4	Students will be able to solve problems in the design of tidal turbines.
5	Ocean thermal energy conversion: Principle, heat exchangers, pumping requirements, application, and devices.	3	The understanding of harnessing thermal energy from the <i>ocean</i> .
6	Solar energy devices: The solar resources, sun-earth geometry, orientation of solar panel, solar spectrum, and air mass, wave-particle duality of light, Photovoltaic energy conversion, Operation of a solar cell: Silicon solar cell, Performance photovoltaic modules, Design of photovoltaic modules and system, Solar thermal devices. Performance of solar thermal system.	6	Design and understanding of harnessing solar energy. Students will be able to solve problems in the design of solar photovoltaic systems.
7	Green Hydrogen: Thermodynamics of hydrogen energy conversion, kinetics of hydrogen absorption and	5	Understanding of hydrogen energy conversion and its application in

	desorption, nano processing of solid-state hydrates, high- capacity hydrides		industry.
8	Geothermal energy: Geophysics, dry rock and hot aquifer analysis, Harnessing geothermal resources	5	Understanding of geothermal energy conversion.
9	Hybrid power plant: Design of hybrid energy power plant: combination of green energies, Storing of energy, techno- economics analysis, Operation and maintenance cost, component sizing, Software description to estimate power plant costs.	6	Students will be able to solve problems on the economics of hybrid power plants.
	Total	42 hrs	

Text Books:

- 1. Xianguo Li, "Green energy- Basic concepts and fundamentals", Springer-Verlag, 2011
- 2. S. Pugalendhi, J. Gitanjali, R. Shalini, P. Subramanian- Handbook on Renewable energy and Green technology, CRC Press, 2024

Reference books

- 1. J. Twidell and T. Weir, "Renewable Energy Resources", E & F N Spon Ltd, London, 1986.
- 2. BelaLiptak, "Post oil energy technology", CRC Press, 2009
- 3. UmakantaSahoo, "A polygeneration process concept for Hybrid Solar and Biomass Power Plant", Wiley, 2018
- 4. Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese, "Renewable Energy Technology Economics and environment", Springer, 2007
- 8. Bent Sorensen "Renewable Energy-Its physics, engineering, use, environmental impacts, economy and planning aspects"-Academic Press, 1997